Hybrid resonant energy harvester integrating ZnO NWs with MEMS for enabling zero-power wireless sensor nodes

نویسندگان

  • Gonzalo Murillo
  • Minbaek Lee
  • Chen Xu
  • Gabriel Abadal
  • Zhong Lin Wang
چکیده

This work introduces a novel concept for energy scavenging from ambient vibrations utilizing ZnO nanowires (NWs). This concept relies on the combination into a single device of a resonant element (i.e. an inertial mass suspended by four serpentine springs) and two arrays of NWs grown at both sides of the inertial mass. The NWs can be bent as a result of the resonant motion of the mass. Due to the zigzag-shaped profile of the inertial mass, this bending generates an electric current between the electrodes. This power can be used to supply wireless sensor nodes at the micro and nanoscale level. In addition, this generator can be integrated with other elements that can be achieved by taking advantage of the ZnO NWs and their unique properties such as chemical sensors, optoelectromechanical systems or logic circuits driven by mechanical or optical signals. A detailed fabrication process, containing the NW growth method, is described in this paper. Theoretical calculations and FEM simulations have been performed and show the possibility of using these kinds of devices to scavenge energy from sonic and ultrasonic waves. © 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYREP: A Hybrid Low-Power Protocol for Wireless Sensor Networks

In this paper, a new hybrid routing protocol is presented for low power Wireless Sensor Networks (WSNs). The new system uses an integrated piezoelectric energy harvester to increase the network lifetime. Power dissipation is one of the most important factors affecting lifetime of a WSN. An innovative cluster head selection technique using Cuckoo optimization algorithm has been used in the desig...

متن کامل

Game Theory based Energy Efficient Hybrid MAC Protocol for Lifetime Enhancement of Wireless Sensor Network

Wireless Sensor Networks (WSNs) comprising of tiny, power-constrained nodes are getting very popular due to their potential uses in wide applications like monitoring of environmental conditions, various military and civilian applications. The critical issue in the node is energy consumption since it is operated using battery, therefore its lifetime should be maximized for effective utilization ...

متن کامل

An Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester

Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...

متن کامل

A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes

To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instanta...

متن کامل

Autonomous Wireless Heat Energy Meter based on Piezoelectric Energy Harvester for Heat Energy Measurement in Building Complexes

This paper presents a platform for power autonomous wireless energy meter device using piezoelectric energy harvesters. This device can be mainly used for measuring the share of heat energy consumption in a fair manner in building complex with central heat energy system. In the suggested device, the piezoelectric energy harvester is also used as a flow-meter to reduce the power consumption of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano Comm. Netw.

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011